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Highlights 47 

 48 

• We compared habitat classifiers based on satellite data or biophysically modeled data. 49 

• Classifiers from modeled predictors performed similarly to those from satellite data. 50 

• Modeled zooplankton did not improve accuracy over remotely sensed chlorophyll. 51 

• Specificity was good but sensitivity was poor for both types of classifiers.  52 

• Modeled predictors are useful to overcome cloud cover and for forecasting. 53 

 54 

Abstract 55 

 56 

Fish habitat models based on remotely-sensed data may be limited by satellite coverage 57 

and availability. We compared the fit and predictive power of Random Forest habitat classifiers 58 

that were developed using predictors derived from a coupled biophysical model (i.e., modeled 59 

predictors) versus similar classifiers that used remotely-sensed satellite data for two data sets 60 

(eggs and adults) and four species that occur widely in the California Current system. When 61 

tested on independent data, classifiers of spawning habitat that used derived predictors (derived 62 

classifiers) had nearly identical accuracies (0-2% difference) to similar classifiers based on 63 

satellite data (satellite classifiers). Accuracies of derived classifiers of adult habitat were within -64 

8% to +7% of comparable satellite classifiers. Accuracies of both types of classifiers on test data 65 

were much greater for Northern anchovy Engraulis mordax and Pacific hake Merluccius 66 

productus (0.75-0.97) than for jack mackerel Trachurus symmetricus and Pacific sardine 67 

Sardinops sagax (0.61-0.72), and generally were greater for classifiers of spawning habitat than 68 

for adult habitat. Specificity was very good for both types of classifiers, but sensitivity was poor, 69 

because classifiers identified potential habitat which was not fully occupied. Adults of all species 70 

used a broader range of habitat conditions during summer than during the spring spawning 71 

period. Derived classifiers have some advantages over satellite classifiers; they are not limited by 72 

cloud cover and they can make predictions in near real-time or the short-term future. However, 73 

there was no consistent improvement in the accuracy of derived predictors that included modeled 74 

zooplankton concentrations over comparable satellite classifiers that included 75 

reflectance/chlorophyll concentration.  76 

 77 

Keywords: Fish, Habitat, Models, ROMS-CoSiNE, Satellite sensing, Random Forest, California 78 

Current System 79 

 80 

1. Introduction 81 

 82 

Fish habitat models are important for our scientific understanding and management of 83 

marine systems because habitat conditions affect fish population dynamics (Hayes et al., 1996; 84 

Vasconcelos et al., 2013), community interactions (Lindegren et al., 2016; Pecuchet et al., 2016), 85 

and spatial distribution in relation to marine reserves (Thompson et al., 2012) and harvest 86 

(Leitão, 2015; Tommasi et al., 2016). Habitat models are also used in the design of surveys to 87 

define the sampling frame and allocate sampling effort (Weber and McClatchie, 2010; Zwolinski 88 

et al., 2011).  89 

Marine fish habitat models have frequently relied on remotely sensed-data from satellites 90 

as predictors. Although such models work well for some species, they have limitations. Cloud 91 

cover can result in large gaps in geographic coverage where no model prediction is possible for 92 
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some areas and times of year. Remotely sensed data must be collected and processed before use. 93 

Thus, it cannot be used for real-time or near-future prediction. A limited suite of predictor 94 

variables is available from satellite data (e.g., sea-surface temperature, chlorophyll, geostrophic 95 

current, wind speed, and, recently, salinity) which may not be adequate to characterize the niche 96 

of all species with great enough precision and accuracy to be useful. Finally, remotely sensed 97 

variables usually are entered directly as “snapshots” into statistical models, which may result in 98 

bias due to lack of process. For example, remotely sensed reflectance/chlorophyll predictors in 99 

fish habitat models usually are a proxy for secondary production that is available as prey for fish. 100 

However, instantaneous chlorophyll measurements may not accurately reflect the recent 101 

productivity of an area or the amount of production that has actually been transferred to higher 102 

trophic levels.  103 

 104 

 An alternative approach to understanding fish habitat associations is to analyze their 105 

spatial distributions as part of a much broader mechanistic model of the ecosystem. There has 106 

been much recent progress on “end-to-end” models that include hydrodynamics, nutrient flows, 107 

primary productivity, and higher trophic levels up to fish or even harvest (Rose et al., 2010; 108 

Kishi et al., 2011; Rose et al., 2015). Such models have some advantages over statistical habitat 109 

models. They include bottom-up and top-down biological interactions along with environmental 110 

conditions. Because they include population dynamics and animal movement, they may be better 111 

able to differentiate realized habitat from unoccupied potential habitat (Planque et al., 2007). 112 

Finally, such models could be run forward in time to make predictions in the near future. 113 

However, end-to-end models currently are most useful for understanding ecosystem interactions 114 

via simulation studies rather than for prediction. This is because they require more data than 115 

usually are available for adequate calibration and validation, and they are particularly subject to 116 

bias due to non-stationarity of the ecosystems they simulate (e.g., environmental regime shifts 117 

and changes in genetic structure of component species; Fulton, 2010). For example, a recently 118 

published end-to-end model of the California Current (Fiechter et al., 2015; Rose et al., 2015) 119 

produced dynamics in the abundance of northern anchovy Engraulis mordax and Pacific sardine 120 

Sardinops sagax that were qualitatively similar to historical data for a 45-year period but could 121 

not yet be parameterized to produce annual estimates suitable for “tactical” decision making.  122 

 123 

A hybrid approach to modeling fish habitat that may overcome some of the limitations of 124 

both satellite-based statistical models and fully mechanistic models is to use a mechanistic model 125 

to provide variables such as environmental conditions and production of lower trophic levels, 126 

and then enter modeled conditions as predictors (hereafter derived predictors) into a statistical 127 

model or algorithm. Formally, modeled predictors are functions of the parameters used to create 128 

the underlying physical model, e.g., wind forcing, boundary conditions, and initial state of the 129 

system. They could be described as indices based on the calculations of the mechanistic model. 130 

In practice, using modeled variables from mechanistic models as if they were measured can 131 

provide a convenient and easily interpretable set of predictors for statistical modeling. There is a 132 

trade-off in potential sources of error using this approach. It implicitly incorporates the 133 

phenology of oceanic conditions into derived predictors because they are the product of an 134 

underlying physical model. However, the approach adds some bias to the statistical model 135 

because derived predictors do not perfectly reproduce the conditions they represent. Becker et al. 136 

(2016) used this approach to model the distributions of eleven cetacean species in the California 137 

Current system. They reported that generalized additive models that used derived predictors of 138 
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salinity, sea-surface temperature, and log-transformed surface chlorophyll concentration from an 139 

ocean circulation model produced nearly identical predictions to those of similar models based 140 

on remotely sensed satellite data.  141 

 142 

The objective of this study was to compare the performance of fish habitat models that 143 

used derived predictors versus similar models that used remotely sensed satellite predictors, 144 

where the type of habitat model was a classification algorithm (i.e., fish presence or absence; 145 

hereafter a classifier). Specifically, we wanted to test whether classifiers based on derived 146 

predictors from a coupled bio-physical model that provided zooplankton concentrations were an 147 

improvement over similar classifiers that used remotely sensed environmental conditions and 148 

chlorophyll. That is, the mechanistic model included an ocean circulation model, which provided 149 

environmental predictors, coupled with a biological model that provided predictors of secondary 150 

production.  151 

 152 

We tested classifier performance using four species that occur widely in the California 153 

Current system. They were northern anchovy (hereafter anchovy), Pacific hake Merluccius 154 

productus (hereafter hake), Jack mackerel Trachurus symmetricus, and Pacific sardine (hereafter 155 

sardine). These species provide good test cases because: 1) they have relatively large geographic 156 

ranges in which habitat conditions and species distributions fluctuate greatly; 2) they are 157 

important forage fish during all or part of their lifecycle and, thus, provide an important link 158 

between secondary production and higher trophic levels; and 3) They have been sampled 159 

extensively in scientific surveys as eggs and adults, thereby providing two data sets with which 160 

to test classifier performance. The four species occur from the Gulf of Alaska (Jack mackerel and 161 

sardine) or northern Vancouver Island (anchovy and hake) to the tip of Baja California and in the 162 

Gulf of California (MacCall and Stauffer, 1983; Cohen et al., 1990; Froese and Pauly, 2017). 163 

Anchovy usually are found within 20 nm of shore but may extend offshore as far as 250 nm 164 

(Froese and Pauly, 2017; U.S. Department of Commerce, 2017a). Hake are primarily restricted 165 

to the continental shelf, usually within 200 nm of shore (Cohen et al., 1990). Jack mackerel and 166 

sardine are more wide ranging with larger animals commonly moving more than 200 nm 167 

offshore (Macewicz and Abramenkoff, 1993; U.S. Department of Commerce, 2017a). All four 168 

species spawn during the late winter or spring and release free-floating eggs, which become 169 

buoyant shortly after fertilization. Eggs hatch within a few days and typically are captured within 170 

short distances of the spawning grounds. Thus, egg surveys of these species have been used with 171 

relatively good accuracy to characterize their spawning habitats (e.g., Checkley et al., 2000; 172 

Weber and McClatchie, 2010; Zwolinski et al., 2011). We tested classifier performance using 173 

relatively data-rich surveys of egg densities during spring and more data-sparse trawl surveys of 174 

adults conducted in spring and summer.  175 

 176 

2. Materials and methods 177 

 178 

2.1 Fish Data 179 

 180 

Eggs were collected using the continuous underway fish-egg sampler (CUFES; Checkley 181 

et al., 1997) during spring cruises offshore of the U.S. west coast and Vancouver Island from 182 

2001 -2016 as part of the California Cooperative Oceanic Fisheries Investigations program 183 

(CalCOFI; cf, McClatchie, 2014) and assessment cruises for coastal pelagic species by the U.S. 184 
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National Marine Fisheries Service. The CUFES collected eggs through a pump on the ship’s hull 185 

at a depth of 3 m and rate of 0.63 m3/min, using a sieve of 200-micron mesh. Samples were 186 

collected every 30 min as the ship was underway at cruising speeds of 9–12 knots. The area from 187 

30-39° N (approximately from San Diego to San Francisco, California) and 117-126° W was 188 

sampled consistently, and additional sampling farther north occurred during some years (U.S. 189 

Department of Commerce, 2017a). Cruises occurred in March through May but usually were 190 

centered in April. The sampling depth was consistent with the near-surface distribution of 191 

anchovy, hake, Jack mackerel, and sardine eggs, which typically concentrate in the upper mixed 192 

layer (Ahlstrom, 1959). Eggs of these four species were enumerated and identified at sea based 193 

on the morphometric characteristics (Moser, 1996).  194 

Adults were sampled by trawl as part of assessment cruises for coastal pelagic species by 195 

the U.S. National Marine Fisheries Service in spring 2002-2015, as part of the cruises described 196 

above. Additional trawl samples were conducted in summer of 2003-2004, 2007-2008, and 197 

2012-2015. Summer trawls were conducted primarily off the northwest coast of the U.S. from 198 

northern California to Washington state before 2008, and for the entire U.S. west coast from 199 

2012-2015. Data were collected using a Nordic 264 surface trawl (NET Systems; Bainbridge 200 

Island, WA) with 3.0 m² XL-Lite foam-core alloy midwater doors and a working mouth opening 201 

of about 600 m² at towing speed. The trawl had variable-size mesh in the throat to retain a range 202 

of animal sizes and an 8-mm mesh liner in the codend. Since 2009, the trawl has been fitted with 203 

a marine-mammal excluder device to prevent the capture of dolphins and other large animals 204 

(Dotson et al., 2010). Trawls were towed at a target speed of four knots for 30 or 45 min between 205 

sunset and sunrise, when coastal pelagic species migrate to the surface to feed. Typically, two or 206 

three tows were conducted per night with spacing of at least ten nm. Trawls were targeted to 207 

areas where coastal pelagic species were likely to occupy based on acoustic data collected during 208 

the day (Zwolinski et al., 2017). That is, trawl samples were not random or necessarily 209 

representative of the range of conditions in the overall survey area.  210 

2.2 ROMS-CoSiNE data 211 

 212 

Ocean simulations were conducted using the Regional Ocean Modeling System  (ROMS; 213 

Shchepetkin and McWilliams, 2005; Shchepetkin and McWilliams, 2009). The ROMS is a free-214 

surface primitive equation ocean model that is discretized in terrain-following curvilinear 215 

coordinates that has frequently been used for modeling transport of larvae. The Pacific basin-216 

wide model used for this study was described by Wang and Chao (2004).  It had 30 vertical 217 

layers and 1/8 degree horizontal resolution over a domain of approximately 45°S to 65°N latitude 218 

and 100°E to 70°W longitude.  219 

The Pacific Ocean ROMS was coupled with the Carbon, Silicate, Nitrogen Ecosystem 220 

model, known as CoSiNE (Chai et al., 2002; Liu and Chai, 2009). The CoSiNE model consisted 221 

of 13 state variables describing plankton (meso-zooplankton, micro-zooplankton, small 222 

phytoplankton and diatoms), nutrients (nitrate, silicate, ammonium, detritus nitrogen, detritus 223 

silicate, phosphate), and others (dissolved oxygen, total carbon dioxide and total alkalinity). The 224 

model was modified to simulate phyto-planktonic photo-acclimation and the dynamic carbon to 225 

chlorophyll and carbon to nitrogen ratios with different growth conditions (Xiu and Chai, 2012).  226 

The coupled ROMS-CoSiNE model was initiated with climatological temperature, 227 
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salinity, and nutrients from the World Ocean Atlas 2001 database (Conkright et al., 2002), total 228 

carbon dioxide and total alkalinity from the Global Ocean Data Analysis Project database (Key 229 

et al., 2004). It was forced with climatological monthly heat and wind from National Centers for 230 

Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) 231 

reanalysis (Kalnay et al., 1996) for 30 years as a spin-up period. Then the coupled ROMS-232 

CoSiNE model was run from 1991-2016 with daily heat flux, evaporation and precipitation from 233 

NCEP/NCAR reanalysis and daily sea surface wind (0.25° resolution) from National 234 

Oceanographic and Atmospheric Administration multiple-satellite blended sea surface winds 235 

(Zhang et al., 2006). No data assimilation was implemented in this ROMS configuration.  236 

The performance of the Pacific Ocean ROMS-CoSiNE model has been evaluated and 237 

further constrained with different satellite and in-situ data (Bidigare et al., 2009; Chai et al., 238 

2009; Liu and Chai, 2009; Xiu and Chai, 2011; Palacz and Chai, 2012). The model solutions for 239 

the central California Current System have been demonstrated to capture spatial variations in the 240 

annual means and seasonal cycles of temperature, nutrients, chlorophyll, and primary production 241 

based on comparisons with remote sensing (SeaWiFS) and in situ observations from CalCOFI 242 

(Guo et al., 2014). The mean annual difference between sea-surface temperatures measured at 243 

sea in conjunction with CUFES sampling and coincident ROMS predictions was 0.01° C (±0.01 244 

SE). The difference was 0.42 (±0.01 SE) for salinity (PSS). Santora et al. (2013) also reported 245 

that the Pacific ROMS-CoSiNE model captured phytoplankton and zooplankton dynamics 246 

reasonably well in the central California Current System.  247 

Three-day averaged model output from the ROMS-CoSiNE model in the California 248 

Current area was used to provide predictors for the classification algorithm. A subset of discrete 249 

solutions from the ROMS-CoSiNE model was extracted as a three-dimensional array at 5 m 250 

depth for each year and environmental variable, where environmental variables were small 251 

phytoplankton (< 5 μm diameter), diatoms, microzooplankton, mesozooplankton, salinity, 252 

temperature, dissolved oxygen concentration, the zonal component of the current, and the 253 

meridional component of the current. The depth component was interpolated from the ROMS 254 

vertical layers using the Python module 'roppy' (Ådlandsvik, 2016). The spatial dimensions of 255 

the study were 300 latitudes and 144 longitudes that encompassed the area 20-50°N and 110-256 

130°W. The values of environmental variables to which eggs or adults were exposed were 257 

estimated by linear interpolation between the nearest values in space and time.  258 

2.3 Satellite Data 259 

 260 

We obtained remotely sensed satellite data for the same geographic area as the ROMS 261 

model from the U.S. NOAA-Fisheries Coastwatch ERDDAP data server (U.S. Department of 262 

Commerce, 2017b) and European Commission Copernicus Marine Environment Monitoring 263 

Service (CMEMS; 2017). Sea-surface temperature (SST) measurements for the period 2001-264 

2012 were obtained from the “Pathfinder Ver 5.2 (L3C), Day and Night, Global, 0.0417°, 265 

Science Quality (Monthly Composite)” data set, Coastwatch ID “erdPH2sstamday”. For the 266 

period 2013-2016, we used the “SST, POES AVHRR, GAC, Global, Day and Night (Monthly 267 

Composite), Lon+/-180” data set, Coastwatch ID “erdAGsstamday_LonPM180”. Chlorophyll- 268 

estimates based on surface reflectance were obtained from the “Chlorophyll-a, Orbview-2 269 

SeaWiFS, R2014.0, 0.1°, Global (Monthly Composite)”, Coastwatch data set, ID 270 

“erdSW1chlamday”, for the period 2001-2002, and “Chlorophyll-a, Aqua MODIS, NPP, L3SMI, 271 
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Global, 4km, Science Quality (Monthly Composite)”, Coastwatch data set ID 272 

“erdMH1chlamday” for the period 2003-2016. Bottom depth measurements were obtained from 273 

the “SRTM30+ Version 6.0, 30 arc second, Global” Coastwatch data set, ID “usgsCeSrtm30v6” 274 

(Becker et al., 2009). Surface currents were obtained from the “Global Observed Ocean Physics 275 

Temperature Salinity Heights Geostrophic Currents Sea Surface Salinity and Sea Surface 276 

Density Reprocessing” data set, with CMEMS identifier “GLOBAL_REP_PHY_001_021” 277 

(Mulet et al., 2012). Sample values were estimated from satellite data by linear interpolation.  278 

 279 

2.4 Random Forests 280 

 281 

We used the Random Forest algorithm (Breiman, 2001) to predict two types of habitat 282 

responses as a function of two types of predictors for each species (i.e., four classifiers for each 283 

of the four species). The random forest algorithm is an ensemble technique that produces 284 

predictions based on a collection of classification or regression trees (the “forest”). It is 285 

particularly appropriate for fitting a descriptive model of habitat use because the technique can 286 

capture simple interactions among predictors without the user explicitly specifying them, is 287 

relatively robust to the inclusion of correlated variables, and tends to avoid over fitting. The 288 

response variables were the presence of eggs in CUFES samples or adults in trawl samples 289 

(hereafter, positive predictions are interpreted to be suitable spawning habitat or adult habitat, 290 

respectively). The two predictor types were derived variables from the ROMS-CoSiNE model or 291 

remotely sensed satellite data.  292 

The derived predictors from the ROMS-CoSiNE model were sea-surface salinity, sea-293 

surface temperature, and concentrations of diatoms, dissolved oxygen, micro-zooplankton, meso-294 

zooplankton, and small phytoplankton, as described above. An additional predictive variable, 295 

eddy kinetic energy (EKE), was calculated from the zonal (U) and meridional (V) components of 296 

the ROMS model as: 297 

��� =
�
�
��

�

�
  (1) 298 

The EKE predictor was a measure of turbulent flow used in the sardine habitat model of Nieto et 299 

al. (2014), and very similar to the gradient in sea-surface height used by Zwolinski et al. (2011). 300 

We also included bottom depth in the ROMS-CoSiNE random forest classifiers. For ROMS-301 

CoSiNE classifiers where trawl captures were the response, month of sample was included as a 302 

predictor to fit potential changes in habitat over the relatively long sampling period (spring 303 

through summer).  304 

 305 

The predictors for random forests based on satellite data were bottom depth, EKE, the 306 

natural log of chlorophyll concentration, and sea-surface temperature. Month of sample was also 307 

included in classifiers where trawl captures were the response variable. The zonal and meridional 308 

components of the current that were used to calculate EKE in the satellite-based classifiers were 309 

from the CMEMS data rather than modeled ROMS data.  310 

 311 

Hereafter, we refer to the random forest classifiers of spawning habitat based on CUFES 312 

data that used derived predictors from the ROMS-CoSiNE model as CUFES-ROMS-CoSiNE 313 

classifiers and similar random forests that were based on remotely sensed satellite data as 314 
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CUFES-satellite classifiers. Similarly, we refer to random forest classifiers of adult habitat based 315 

on trawls as trawl-ROMS-CoSiNE classifiers or trawl-satellite classifiers. 316 

We reserved data from four years, 2003, 2007, 2012, and 2015, as a test data set to 317 

evaluate the extent to which the random forest out-of-bag estimates of classifier fit successfully 318 

predicted classifier performance on independent data. This left 12 years of CUFES data available 319 

for model development, and 11 years of trawl data, including four years of trawl data that were 320 

sampled during summer. Available sample sizes were somewhat smaller for satellite-based 321 

classifiers than for ROMS-CoSiNE based classifiers due to cloud cover and lack of predictions 322 

for nearshore samples. A total of 12,550 CUFES samples were used to develop the CUFES-323 

ROMS-CoSiNE classifiers, and 4,196 to test them. Only 10,401 samples were available to 324 

develop the CUFES-satellite classifiers, and 3,735 samples to test them. For trawl-based 325 

classifiers, 1,000 development samples and 507 test samples were available for the trawl-ROMS-326 

CoSiNE classifiers. There were 745 development samples, and 407 test samples available for the 327 

trawl-satellite classifiers.  328 

 329 

We fitted the random forest classifiers with 5,000 trees using the “ranger” package 330 

version 0.9.11 (Wright and Ziegler, 2017) in the R statistical computing environment version 331 

3.5.0 (R Core Team, 2018). Each classifier was tuned using several steps before conducting a 332 

final fitting. First, we selected the number of predictors sampled for splitting at each node (i.e., 333 

used for a particular tree; ranger parameter “mtry”) by optimizing with respect to out-of-bag 334 

error using the “train” function of R package “caret” version 6.0-79 (Kuhn, 2008). Next, we 335 

performed predictor selection for each classifier using the Boruta algorithm (Kursa and 336 

Rudnicki, 2010), as implemented in in R package “Boruta” version 5.3.0. The Boruta algorithm 337 

identifies relevant predictor variables from a candidate set by comparing their predictive abilities 338 

to “shadow” variables that are obtained by randomly shuffling the values of original variables 339 

across objects. Shadow variables can have non-zero importance only due to random fluctuation 340 

(where importance is the normalized mean decrease in accuracy of all random forests without the 341 

variable). Variables that have significantly greater importance than the best shadow variable over 342 

all permutations are judged to be relevant. We performed the selection using function “Boruta” 343 

with 5,000 trees and the “mtry” parameter determined as described above. Variables identified as 344 

unimportant were dropped from final classifiers.  For all species and gear types, the number of 345 

samples where eggs or adults were absent was much greater than the number of samples where 346 

they were present. Therefore, we adjusted the “sample.fraction” parameter of the “ranger” 347 

function to reduce the number of samples with absences used in each bootstrap resample until 348 

the algorithm produced nearly equal numbers of false positives and false negatives. That is, we 349 

tuned the model so that the two types of misclassification errors had equal importance (Berk, 350 

2008).  351 

 352 

Classifiers were evaluated using three statistics: accuracy, sensitivity, and specificity 353 

(Yerushalmy, 1947; Trevethan, 2017). Accuracy was calculated as the proportion of correct 354 

classifications as: 355 

 356 

(True positives + True negatives) / Number samples (2) 357 

 358 

Sensitivity, also known as probability of detection or ability to detect a true positive, was 359 

calculated as: 360 
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 361 

True positives / (True positives + False negatives) (3) 362 

 363 

Specificity, also known as the true negative rate or ability to detect a true negative, was 364 

calculated as: 365 

 366 

True negatives / (True negatives + False positives) (4) 367 

 368 

3. Results 369 

 370 

All candidate predictor variables were accepted for use in random forest classifiers except 371 

one case (Figure 1). The EKE predictor for hake in the satellite-trawl classifier was rejected as 372 

having no greater predictive ability than the randomly shuffled shadow variables (as measured 373 

by normalized mean decrease in accuracy) and, thus, excluded from the classifier. The EKE 374 

predictor was also a relatively weak, but included, predictor for anchovy and sardines in the 375 

trawl-ROMS-CoSiNE classifiers. Variable importance estimates for the ROMS-CoSiNE-based 376 

classifiers were much more precise than those for satellite-based classifiers due to the larger 377 

sample sizes available. Sea-surface temperature was a relatively important predictor for all 378 

species. The effects of bottom-up production, as represented by the chlorophyll predictor, were 379 

very important in most of the satellite-based classifiers. However, the effects of primary and 380 

secondary production were partitioned among the diatom, micro-zooplankton, meso-381 

zooplankton, and small phytoplankton variables in the ROMS-CoSiNE-based models.  382 

 383 

Accuracies of ROMS-CoSiNE based classifiers generally were similar to those of their 384 

satellite-based counterparts. Accuracies of CUFES-ROMS-CoSiNE classifiers were all within 385 

2% of CUFES-satellite classifiers for the same species when applied to the test data (Figure 2A). 386 

The trawl-ROMS-CoSiNE classifiers performed somewhat worse on test data than comparable 387 

trawl-satellite classifiers for anchovy and hake (2-8% less accuracy), but somewhat better for 388 

Jack mackerel and sardine (4-7%; Figure 2B). Classifiers of adults captured in trawls generally 389 

were less accurate than comparable classifiers of spawning habitat from CUFES data, regardless 390 

of predictor type. All classifiers had greater out-of-bag accuracies than test accuracies. However, 391 

there were relatively large species-specific differences among classifiers. The decline in accuracy 392 

between out-of-bag and test estimates was greatest for Jack mackerel and sardine (4-19%) and 393 

least for anchovy and hake (1-14%).  394 

 395 

The presence of anchovy and hake could be predicted with greater accuracy than the 396 

presence of Jack mackerel or sardine for both CUFES and trawl data sets. The CUFES-based 397 

classifiers had accuracy greater than 0.90 for anchovy and hake but only 0.66-0.87 for Jack 398 

mackerel and sardine. The trawl-based classifiers had accuracies of 0.75-0.95 for anchovy and 399 

hake but 0.61-0.75 for Jack mackerel and sardine.  400 

 401 

Specificity (i.e., ability to detect a true negative) was very good for most classifiers that 402 

used either ROMS-CoSiNE or satellite data (Figure 2) but sensitivity (i.e., probability of 403 

detection or ability to detect a true positive) was poor (0.00-0.61 for the test data set). A few 404 

classifiers for anchovy and hake had sensitivity values at or near zero with corresponding 405 

specificities at or near one. These were the results of very few captures. That is, the classifiers 406 
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correctly predicted that the species tested would not occur in nearly all samples because the 407 

samples occurred in habitat that was poor for these species. However, the classifiers did not 408 

correctly predict the species’ presence in the small number of samples that occurred within 409 

suitable habitat.  410 

 411 

The spatial patterns in habitat predicted by the CUFES-ROMS-CoSiNE and CUFES-412 

satellite classifiers generally were similar for the test data set (Figure 3). Predicted habitats for 413 

Jack mackerel and sardine were relatively large and extended far offshore. Lack of satellite 414 

coverage due to cloud cover was substantial in 2003 and 2007, and likely precluded the satellite 415 

classifiers from identifying some habitat for Jack mackerel and sardine. Predicted habitats for 416 

anchovy and hake were constricted to small areas near the coast, with almost no spawning 417 

habitat for hake occurring by mid-April.  However, the classifiers exhibited some differences for 418 

anchovy when extrapolating to the south into unsampled areas along Baja California. The 419 

CUFES-satellite classifier for anchovy predicted that suitable habitat extended south along most 420 

of Baja California where none was predicted by the CUFES-ROMS-CoSiNE classifier in three 421 

of four test years. These differences could not be evaluated with the existing data. No strong 422 

trend in the spatial distribution of classifier errors (false positives versus false negatives) was 423 

evident for anchovy, Jack mackerel or sardine for any classifier type (Figure 4). Most false 424 

positives for hake occurred off the central California coast or in the Southern California Bight. 425 

However, there were too few false negatives for hake to evaluate their spatial distribution.  426 

 427 

The temporal patterns in habitat use differed somewhat for adults sampled in trawls. 428 

Month of sampling was a moderate to weakly important predictor in the trawl-based classifiers 429 

(Figure 1). However, the fact that it was sufficiently important to be retained as a predictor 430 

variable indicates that adults occurred in waters with somewhat different habitat conditions 431 

during spring versus summer. The distribution of predictors from the ROMS-CoSiNE model 432 

where adults were captured (Figure 5) indicated that all species tended to occupy a narrower 433 

range of bottom depths in generally shallower water during summer, but a broader range of 434 

conditions otherwise. The summer distributions of adults from all species tended to occur in 435 

waters with somewhat greater dissolved oxygen, mesozooplankton concentrations, and sea-436 

surface temperatures, but lower sea-surface salinities.  437 

 438 

4. Discussion 439 

 440 

 The generally similar accuracies between derived classifiers and those of comparable 441 

satellite-based classifiers (Figure 2) indicates that derived classifiers may be a useful tool where 442 

the limitations of satellite-based classifiers prevent their application. Derived classifiers may be 443 

useful where cloud cover severely limits satellite coverage or no lost pixels can be tolerated. The 444 

ability to create real-time or near future predictions may be particularly useful for adaptively 445 

planning long surveys and dynamic management of fisheries (Becker et al., 2016). These results 446 

are consistent with the development process for ocean circulation models. Measured data from 447 

satellites and other sensors commonly are used to evaluate the performance of ocean circulation 448 

models, as they were for the ROMS-CoSiNE model (cf., section 2.2). Derived predictors were 449 

close to their measured counterparts, and produced similar classifiers, because the underlying 450 

mechanistic model reproduced measured environmental conditions well. The use of ocean 451 
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circulation models to predict habitat has now been demonstrated for fish (this study) and 452 

cetaceans (Becker et al., 2016).  453 

 454 

The fact that derived classifiers did not have consistently greater accuracies than 455 

comparable satellite-based classifiers indicates there was no particular advantage to using 456 

zooplankton predictors in the coupled biological portion of the ROMS-CoSiNE model over 457 

primary production, as measured by satellite. We hypothesized that the small- and large-458 

zooplankton predictors might provide derived classifiers with greater accuracy than comparable 459 

satellite predictors because zooplankton is a more direct measure of fish habitat than chlorophyll. 460 

This is because the species tested consume plankton directly, although hake and Jack mackerel 461 

switch to piscivory in larger sizes (MacGregor, 1966; Rexstad and Pikitch, 1986). There are 462 

several non-exclusive explanations for the lack of model improvement. Inadequate precision of 463 

zooplankton predictors may have offset potential gains. Biological interactions may have created 464 

differences between the true and predicted concentrations of zooplankton available because 465 

modeled zooplankton predictors were calculated based on bottom-up trophic conditions only. 466 

Top-down and community interactions also may have been more important in determining 467 

habitat conditions than zooplankton. The consistently high importance of variables in trawl 468 

models that are not directly consumed by adults (e.g., diatoms) suggests that production variables 469 

were, in part, indexing other non-modeled habitat conditions that affected fish distribution rather 470 

than prey availability directly. However, we note that importance of predictors related to bottom-471 

up productivity relative to each other (Figure 2) should be interpreted with caution because they 472 

are partly correlated and interacting with each other (Kursa and Rudnicki, 2010).  473 

 474 

 The degree to which models were overfit, as measured by the decrease in accuracy 475 

between out-of-bag- and test-data statistics for comparable classifiers, varied greatly by species, 476 

predictor type, and gear (Figure 2). Classifiers for anchovy and hake captured in the CUFES 477 

showed little overfitting, as evidenced by declines of 1-4% (e.g., the CUFES-ROMS-CoSiNE 478 

classifier for anchovy had out-of-bag accuracy of 0.95 and accuracy on test data of 0.91). To the 479 

contrary, Jack mackerel and sardine captured in the CUFES exhibited the greatest degree of 480 

overfitting, with declines in accuracy of 4-19%. The pattern for classifiers based on trawl data 481 

was opposite that of the CUFES classifiers. Anchovy and hake exhibited the greatest declines in 482 

accuracy (7-14%) for trawl-based classifiers, and Jack mackerel and sardine the least (4-7%). 483 

These results suggest the degree to which overfitting occurred may have been a function of the 484 

number and type of predictors, sample sizes, and species distributions. Even for a relatively long 485 

time period with considerable variation in conditions (12,550 observations and 12 years of 486 

developmental data over a 16-year period for CUFES data), the algorithm may be fitting false 487 

correlations because too few animals have been captured over the entire range of values needed 488 

to characterize their tolerance for some predictors. (i.e., the edges of a species' tolerance; Myers, 489 

1998). Thus, it may not be obvious when overfitting is likely to be a problem when creating a 490 

habitat model or classifier for a novel species. We note that the expected accuracy of a classifier 491 

with no predictive ability (i.e., a random guess) is 0.50. A decline in accuracy from 0.87 to 0.68 492 

such as that found for sardine in the CUFES-ROMS-CoSiNE classifier is the difference between 493 

a very good predictive algorithm and a poor one. These results suggest independent data may be 494 

needed to realistically quantify the predictive power of fish habitat models or algorithms if they 495 

are to be used for prediction.  496 

 497 
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 Habitat models that predict animal presence based on environmental conditions have 498 

some limitations regardless of whether the predictors are measured or modeled. Even if all 499 

important habitat conditions that define a species niche are included in a model, its accuracy will 500 

not be perfect because the model predicts potential habitat rather than realized habitat (Planque et 501 

al., 2007). The effect of unoccupied potential habitat was evident in this study because classifiers 502 

generally had poor sensitivity (i.e., probability of detection) but good specificity (i.e., true 503 

negative prediction rate). To achieve greater accuracy, it may be necessary to include animal 504 

births, deaths, and movement that determine the subset of appropriate habitat that actually is 505 

occupied. The hybrid approach to modeling habitat that uses derived predictors from a 506 

mechanistic model could be further refined by including additional population dynamics to the 507 

mechanistic model. For example, starting locations of fish could be estimated based on a 508 

previous survey, and then movement and survival could be included to improve model accuracy. 509 

The limitations of habitat models also have implications for their use in survey design. We 510 

assumed that both types of classification errors, false positive or false negative, were equally 511 

important in this study and tuned the random forests to balance them (via the sample fractions 512 

selected in each class; cf. Methods 2.4). However, if sensitivity is likely to be poor in any case 513 

because the model is predicting potential rather than realized habitat, it may be better to train 514 

classifiers to maximize specificity at the expense of sensitivity and then stratify by predicted 515 

habitat conditions. That is, minimize the area of the stratum in which good habitat exists, and in 516 

which the greatest sampling effort is required.  517 

 518 

Classifiers of adults suggested that a broader range of habitat conditions were used during 519 

summer than during the spring spawning period for all species (Figures 1 and 5). The effect was 520 

most subtle for sardines, whose migration pattern allows them to use similar habitat throughout 521 

the year despite seasonal changes (Zwolinski et al., 2011). The other three species tested also 522 

stay in appropriate habitat via migration to varying extents. Thus, it has sometimes been assumed 523 

that environmental conditions in the spawning habitat represent the same habitat conditions used 524 

by the species throughout the year. Our results indicate that habitat models based on spawning 525 

habitat (egg presence) should be used with caution to predict the species’ presence outside of the 526 

spawning season.  527 

 Our ability to identify adult habitat outside of the spawning season was relatively poor for 528 

the species tested because trawl-based classifiers were less accurate than CUFES-based 529 

classifiers (Figure 2). This problem could partly be solved with additional trawl sampling. The 530 

trawl data set was much sparser than the CUFES data set, and the non-random selection of trawl 531 

locations likely reduced the range of habitat conditions sampled (cf. Methods 2.1). However, 532 

classifiers based on trawl samples may inherently suffer from worse sensitivity than CUFES-533 

based classifiers because adults actively avoid the trawl to some extent. Classifier accuracy also 534 

was relatively poor for the two species with greatest range and mobility, Jack mackerel and 535 

sardine. In combination, trawl-based classifiers for Jack mackerel and sardine probably were not 536 

accurate enough for most applications. For example, the trawl-satellite classifier for sardine (0.61 537 

accuracy) performed only somewhat better than a random choice with expected accuracy of 0.50. 538 

It may be most cost effective to survey these species during the spawning season because they 539 

are likely to be aggregated in areas that can be better identified a priori.  540 

 541 

5. Conclusions 542 

 543 
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Habitat classifiers developed using derived (modeled) predictors from a coupled 544 

biophysical model had similar predictive ability to those of similar satellite-based classifiers for 545 

four species of fish. However, there was no improvement in the accuracy of derived predictors 546 

that included modeled zooplankton concentrations, which are not available from satellite data, 547 

over comparable satellite classifiers that included reflectance/chlorophyll concentration. 548 

Derived- and satellite-based classifiers both tended to have good specificity (i.e., ability to 549 

identify true negatives) but poor sensitivity (i.e., ability to detect a true positive) because 550 

classifiers identified potential habitat which was not fully occupied. Classifiers for two most 551 

wide ranging and mobile species tested, Jack mackerel and sardine, were less accurate than those 552 

of the species with more restricted ranges of habitat, anchovy and hake. Derived classifiers have 553 

advantages over satellite classifiers that make them well suited for dynamic species management 554 

and survey planning. They are not limited by cloud cover and they can make predictions in near 555 

real-time or the short-term future.  556 

 557 
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  730 

Figure Captions 731 

 732 

Figure 1. Box plots of normalized variable importance (decrease in variable importance when the 733 

variable is not present divided by its standard deviation) for predictors in 5,000 trees to predict 734 

the presence of four species. Black boxplots were included in final classifiers; gray boxplots 735 

were not. The area inside each box represents the first and third quartiles. Whiskers extend to the 736 

data range. Predictor variables were derived predictors from the ROMS-CoSiNE model (A and 737 

B) or remotely sensed satellite data (C and D). Rows A and C indicate Random Forest classifiers 738 

to predict the presence of eggs from CUFES samples, and rows (B and D) the presence of adults 739 

from trawl samples. The Shadow Min, Mn, And Max columns are the minimum, mean, and 740 

maximum distributions of the shadow variables used to perform variable selection. The shadow 741 

variable is the best performing randomly shuffled variable whose values were obtained from the 742 

original predictors (Kursa and Rudnicki, 2010). That is, they represent the distribution of a 743 

variable that has no predictive value. Note the scales of y axes differ.  744 

 745 

Figure 2. Accuracy, sensitivity, and specificity of Random Forests to predict the presence of eggs 746 

from CUFES samples (A) and adults in trawls (B) for classifiers of four species (Anch=anchovy, 747 

J Mack=Jack mackerel, Sard=sardine) using derived predictors from the ROMS-CoSiNE model 748 

or remotely sensed satellite data (Sat). Areas of gray boxes are proportional to the magnitude of 749 

the statistic in each cell. The OOB rows indicate statistics for out-of-bag samples in the 750 

developmental data sets. The test rows indicate statistics for the independent test data set, years 751 

2002, 2006, 2011, and 2015.  752 

 753 

Figure 3. Predicted spawning habitat for four species on April 16 of each year in the test data set 754 

(2002, 2006, 2011, and 2015) for Random Forest classifiers using either predictors derived from 755 

the ROMS-CoSiNE model or remotely sensed satellite data. The color scale indicates the 756 

predicted probability of capturing one or more eggs in a CUFES sample. White areas indicate 757 

classifier predictions < 0.5, i.e., no eggs predicted. Blue indicates areas where no prediction 758 

could be made for satellite-based classifiers because of cloud coverage or proximity to shore.  759 

 760 

Figure 4. Spatial distribution of classification errors for Random Forests to predict the presence 761 

of eggs from CUFES samples applied to the test data set (years 2002, 2006, 2011, and 2015) for 762 

four species using derived predictors from the ROMS-CoSiNE model or remotely sensed 763 

satellite data. The upper right map in each panel indicates egg presences, and the lower left 764 

indicates negative samples. Purple indicates a correct classifier prediction and red indicates an 765 

incorrect prediction. Thus, upper purple = true positive, lower purple = true negative, upper red = 766 

false negative, and lower red = false positive.  767 

 768 
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Figure 5. Distributions of habitat predictors from the ROMS-CoSiNE model for adults captured 769 

in trawls during spring (Spr) and summer (Sum). Half violin plots depict a boxplot in black and 770 

kernel density estimate of distribution in gray for each predictor and season.   771 
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